Математика задачи курсового и типового расчета

Вычисления несобственного интеграла вида Вычислить . Лемма Жордана

Вычисления несобственного интеграла вида Вычислить .

Вычисление интегралов вида

 

Задача . Фокусы эллипса совпадают с фокусами гиперболы

 Задача . Дано уравнение кривой второго порядка . Выполнив поворот и параллельный перенос координатных осей, получить каноническое уравнение кривой и построить ее в исходной системе координат.

Выполнение третьего задания предполагает знание уравнений прямой на плоскости и в пространстве и уравнений плоскости.

Решим типовую задачу. Задача . Провести плоскость через перпендикуляры из точки   к плоскостям  и . Найти расстояние от основа­ния первого перпендикуляра до второй плоскости.

Четвертое задание предлагает изобразить тело, ограниченное заданными поверхностями второго порядка и плоскостями.

 Решим конкретную задачу. Задача. Нарисовать тело, ограниченное указанными поверхностями. Указать тип поверхностей, ограничивающих данное тело: .

Задача . Решить систему

Рассмотрим теперь задачи шестого типа, где предлагается привести к каноническому виду уравнение поверхности второго порядка с помощью теории квадратичных форм. Рассмотрим общее уравнение поверхности второго порядка

Привести к каноническому виду уравнение поверхности второго порядка  с помощью теории квадратичных форм. Сделать рисунок.

 

Ряды и интеграл Фурье Функция f(x), определенная на всей числовой оси называется периодической, если существует такое число , что при любом значении х выполняется равенство . Число Т называется периодом функции. Ряды Фурье для четных и нечетных функций

Ряд Фурье по любой ортогональной системе функций Последовательность функций  непрерывных на отрезке [a,b], называется ортогональной системой функции на отрезке [a,b], если все функции последовательности попарно ортогональны на этом отрезке, т. е. если   Система называется ортогональной и нормированной (ортонормированной) на отрезке [a,b],

Задача о колебании струны Пусть в состоянии равновесия натянута струна длинной l  с концами x=0 и x=l. Предположим, что струна выведена из состояния равновесия и совершает свободные колебания. Будем рассматривать малые колебания струны, происходящие в вертикальной плоскости.

Достаточные условия представимости функции в интеграл Фурье.

Разложение функций в тригонометрический ряд Фурье Найдем первые пять гармоник для найденного ряда Разложение четной функции в ряд

Комплексная форма ряда по косинусам

Представление функции интегралом Фурье Проверка условий представимости Представление функции полиномом Лежандра

Дискретное преобразование Фурье

Линейным дифференциальным уравнением называется уравнение вида: Пример Покажем, что если определитель равен нулю, то функции необязательно линейно зависимы.  

Фундаментальная система решений линейного однородного уравнения

Определение: Любые n линейно независимых решений линейного однородного дифференциального уравнения n-ного порядка называется фундаментальной системой решений этого уравнения.

Линейное однородное дифференциальное уравнение с постоянными коэффициентами

Решение неоднородного линейного дифференциального уравнения n-го порядка

Метод неопределенных коэффициентов для нахождения частного решения неоднородного дифференциального уравнения с постоянными коэффициентами. Пример Рассмотрим случай, когда корни характеристического многочлена совпадают.

Примеры решения задач курсового расчета по математике