Числовые ряды Функции комплексной переменной Операционное исчисление Примеры решения задач

Математика задачи контрольной работы

Дискретное преобразование Фурье

Прямое преобразование

 Для того, чтобы произвести прямое преобразование, необходимо задать данную функцию (гл. 1, рис. 1) таблично. Поэтому разбиваем отрезок от 0 до   на N=8 частей, так чтобы приращение:

В нашем случае , и значения функции в k-ых точках будет:

для нашего случая (т.к. a=0).

 Составим табличную функцию:

k

0

1

2

3

4

5

6

7

0

0.785

1.571

2.356

3.142

3.927

4.712

5.498

0

0.707

1

0.707

0

0

0

0

Табл. 1

Прямым дискретным преобразованием Фурье вектора называется . Поэтому найдем :

, n=0,1,...,N-1

  Сумму находим только до 3 слагаемого, т.к. очевидно, что от 4 до 7 к сумме суммируется 0 (т.к. значения функции из таблицы равны нулю).

 Составим таблицу по прямому дискретному преобразованию:

зная, , где

  , где

n

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

2,4

2

1

0

0.4

0

1

2

0.318

0.25

0.106

0

0.021

0

0.009

0

Табл. 2

Амплитудный спектр

Обратное преобразование

 Обратимся к теории гл.1. Обратное преобразование- есть функция :

В нашем случаи это:

  А теперь найдем модули  и составим таблицу по обратным дискретным преобразованиям:

k

0

1

2

3

4

5

6

7

0

0.785

1.571

2.356

3.142

3.927

4.712

5.498

0

0.707

1

0.707

0

0

0

0

0

0.708

1

0.707

8e-4

5e-5

5e-4

3e-4

Табл. 3

Из приведенной таблицы видно, что  приближенно равно .

 Построим графики используя табл.3, где - это F(k), а - это f(k) рис. 6 :

Рис. 6

Вывод:

 На основе проделанных расчетов можно заключить, что заданная функция представима в виде тригонометрического ряда Фурье, а также интеграла Фурье, полинома Лежандра и дискретных преобразований Фурье. О последнем можно сказать, что спектр (рис. 6) прямого и обратного преобразований совпадают с рассматриваемой функцией и расчеты проведены правильно.


Пример. Вычислить интеграл